Structure Determination of Ribosylated Rifampicin and Its Derivative: New Inactivated Metabolites of Rifampicin by Mycobacterial Strains

NAOKO MORISAKI, HISAYOSHI KOBAYASHI and SHIGEO IWASAKI*

Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan

KAZUO FURIHATA

Department of Agricultural Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan

ERIC R. DABBS[†], KATSUKIYO YAZAWA and YUZURU MIKAMI

Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, 1-8-1 Inobana, Chuo-ku, Chiba 260, Japan

(Received for publication April 7, 1995)

Rifampicin (1) was converted into two inactivated products RIP-Ma and RIP-Mb by *Mycobacterium smegmatis* DSM43756. MS, NMR and chromatographic analysis showed the compounds to be 3-formyl-23- $[O-(\alpha-D-ribofuranosyl)]$ rifamycin SV (6) and 23- $[O-(\alpha-D-ribofuranosyl)]$ rifampicin (7), respectively.

A semisynthetic antibiotic rifampicin (1) is an important chemotherapeutic agent for tuberculosis and leprosy.^{1~3)} As the inactivated product of rifampicin by *Nocardia* spp., most of which are resistant to rifampicin, we isolated four metabolites RIP-1, -2, -3 and -4, indicating the major resistance mechanism of these organisms is the transformation of 1 to the inactive compounds.^{4~6)} The inactivation pattern is genus specific⁷⁾: *N. brasiliensis* glycosylate 1 at 23-OH to form

3-formyl-23-[O-(β -D-glucopyranosyl)]rifamycin SV (RIP-1, 2) and 23-[O-(β -D-glucopyranosyl)]rifampicin (RIP-2, 3), and *N. otitidiscaviarum* phosphorylate 1 at 21-OH to form 21-(O-phosphoryl)rifampicin (RIP-3, 4) and 3-formyl-21-(O-phosphoryl)rifamycin SV (RIP-4, 5) (Fig. 1). *Bacullus* species also inactivate rifampicin by phosphorylation to RIP-3 and RIP-4, or decolorization.⁸)

During our studies on rifampicin inactivation by fast

Fig. 1. Structures of rifampicin (1), RIP-1 (2), RIP-2 (3), RIP-3 (4), RIP-4 (5), RIP-Ma (6) and RIP-Mb (7).

Permanent address: Genetic Department, University of the Witwatersrand, 1 Jan Smuts Ave., Johannesburg 2050, South Africa.

growing mycobacterial strains, $^{9,10)}$ we found that several of them are resistant to rifampicin. From the culture broth of rifampicin resistant *M. smegmatis* DSM43756 grown in the presence of rifampicin, two new inactivated metabolites, RIP-Ma (6) and RIP-Mb (7), were isolated. This paper reports on the structure determination of 6 and 7 (Fig. 1). Biological transformation of rifampicin to RIP-Ma and RIP-Mb, isolation and antimicrobial activities are described elsewhere.¹¹⁾

Experimental

General

¹H and ¹³C NMR spectra were measured in CD₃OD on a JEOL ALPHA-500 NMR spectrometer at 500 and 125 MHz, respectively. Chemical shifts of ¹H and ¹³C NMR were recorded in δ units relative to internal tetramethylsilane (δ =0). FAB-MS and HRFAB-MS were measured on a JEOL JMS-HX110 instrument. HPLC was performed on a Tosoh CCPP-M apparatus.

Determination of Ribose Configuration

The configuration of ribose in RIP-Mb (7) was determined on a chiral HPLC column after hydrolysis and derivatization. One mg of 7 was hydrolyzed with 2M-CF₃COOH (0.2 ml) at 120°C for 1 hour and, after the removal of the solvent with N₂ stream, the reaction product was dried in vacuo. The crude ribose was converted to oxime with $HONH_2 \cdot HCl$ (1 mg), CH_3COONa (2 mg) and methanol (0.2 mg) at 60° C for 1 hour. After removal of the solvent, the product was treated with (CH₃CO)₂O (0.2 ml) at 120°C for 1 hour. Removal of the residual reagent followed by dissolving the products in CHCl₃ and washing with H₂O gave crude aldononitrile acetate (8). After purifying by HPLC (ODS column, mobile phase: 45% CH₃CN - H₂O), the ribose derivative 8 was analyzed on a chiral column (Chiralcel OD-H, 4.6 mm i.d. × 250 mm, Daicel Chemical Ind., Ltd., mobile phase: 2% isopropanol - n-hexane, 0.5 ml/minute).

Results and Discussion

Structure Determination

The structures of RIP-Ma and RIP-Mb were determined by comparison with the spectroscopic data of rifampicin, RIP-1 and RIP-2.⁴⁾

The molecular weights and molecular formulae of RIP-Ma ($C_{43}H_{55}NO_{17}$: 857) and RIP-Mb ($C_{48}H_{66}N_4O_{16}$: 954) were determined by positive and negative FAB-MS and HRFAB-MS (Table 1). These data suggested that RIP-Ma and RIP-Mb are the derivatives of 3-formyl-rifamycin SV and rifampicin glycosylated with a pentose, respectively.

The structure of RIP-Ma (6) was elucidated by NMR data. ¹H and ¹³C NMR chemical shifts were assigned by COSY, C-H COSY and HMBC experiments (Tables 2 and 3). Signals due to a formyl group at $\delta_{\rm H}$ 10.53 ppm and $\delta_{\rm C}$ 193.1 ppm were shown in the expence of the signals due to N-methylpiperazine moiety, indicating that 1-amino-4-methylpiperazine has been cleaved off. The presence of ribofuranosyl moiety was indicated by the ¹H and ¹³C NMR signals^{12~14}): $\delta_{\rm H}$ 5.24 ppm (H-1'), 3.93 ppm (H-2'), 3.87 ppm (H-3'), 4.01 ppm (H-4') and 3.52 ppm (H-5' × 2): ¹H-¹H couplings. $J_{1'-2'} = 4.5$ Hz, $J_{2'-3'} = 5.5 \text{ Hz}, J_{3'-4'} = 1.5 \text{ Hz}, J_{4'-5'} = 4.0 \text{ Hz}; \delta_{\text{C}}$ 105.1 ppm (C-1'), 73.2 ppm (C-2'), 71.6 ppm (C-3'), 86.7 ppm (C-4') and 63.4 ppm (C-5'). The glycosylation site was determined by HMBC experiment to correlate H-23 with C-1', and H-1' with C-23 (Fig. 2). Down field shifts of the H-23 signal ($\Delta \delta_{\rm H}$ 0.14 ppm) and C-23 signal ($\Delta \delta_{\rm C}$ 9.9 ppm) relative to those of rifampicin were also in accord with the ribosylation of the 23-OH.

The structure of RIP-Mb (7) was similarly determined by NMR data (Tables 2 and 3). ¹H and ¹³C NMR spectra of 7 exhibited the signals due to ribosyl group: $\delta_{\rm H}$ 5.22 ppm (H-1'), 3.93 ppm (H-2'), 3.88 ppm (H-3'), 4.00 ppm (H-4') and 3.51 ppm (H-5'): $\delta_{\rm C}$ 105.1 ppm (C-1'),

Table 1. Mass spectral data of RIP-Ma (6) and RIP-Mb (7).

	Molecular formula & molecular weight	Positive FAB-MS	Negative FAB-MS	HRFAB-MS
Rifampicin	C43H58N4O12 822			
RIP-Ma	C43H55NO17 857	m/z 857 (M) 858 (M+H) 880 (M+Na)	m/z 856 (M-H)	Calcd. for C43H55NO17Na (M+Na) 880.3368
RIP-Mb	C48H66N4O16 954	m/z 954 (М) 977 (М+Na) 993 (М+К)	m/z 953 (M-H)	Calcd. for C48H66N4O16Na (M+Na) 977.4372 Found 977.4459

Proton	Rifampicin*1	RIP-Ma	RIP-Mb	
13	1.71(3H, s)	1.70(3H, s)	1.70(3H, s)	
14	2.02(3H, s)	2.01(3H, s)	2.02(3H, s)*4	
17	6.35(1H, br d, 10.5)	6.28(1H, br d,11.0)	6.36(1H, d,11.0)	
18	7.25(1H, dd, 15.8, 10.5)	7.40(1H, dd,16.0, 11.0)	7.17(1H, dd,15.5, 11.0)	
19	6.08(1H, dd, 15.8, 7.0)	6.14(1H, dd,16.0, 7.5)	6.10(1H, dd,15.5, 7.0)	
20	2.31(1H, m)	2.27(1H, ddq, ca. 9.0, 7.0,7.0)	2.27(1H, m)	
21	3.87(1H, dd, 10.0, 1.0)	3.84(1H, dd, 9.5, 1.0)	3.80(1H, brd, 9.0)	
22	1.74(1H, m)	1.87(1H, brq, 7.0)	1.80(1H, m)	
23	3.08(1H, dd, 10.5, 2.0)	3.22(1H, dd, 9.5,1.0)	3.21(1H, dd, 9.0,1.5)	
24	1.48(1H, m)	1.62(1H, dq, 9.5, 7.0)	1.65(1H, m)	
25	5.16(1H, d, 10.5)	4.96(1H, d,10.5)	4.97(1H, d,10.5)	
26	1.24(1H, m)	1.15(1H, ddq,10.5, 1.0, 7.0)	1.17(1H, m)	
27	3.38(1H, d, 8.0)	ca. 3.34 [*] 2	3.30(1H, d, ca.8.0)*3	
28	5.07(1H, dd,12.7, 8.0)	5.08(1H, dd,12.5, 8.0)	5.11(1H, dd,12.5, 8.0)	
29	6.26(1H, d,12.7)	6.25(1H, d, 12.5)	6.24(1H, d, 12.5)	
30	2.02(3H, s)	1.99(3H, s)	2.01(3H, s)*4	
31	0.93(3H, d, 7.0)	1.01(3H, d, 7.0)	0.94(3H, d, 7.0)	
32	0.99(3H, d, 7.0)	1.03(3H, d, 7.0)	1.01(3H, d, 7.0)	
33	0.61(3H, d, 7.0)	0.64(3H, d, 7.0)	0.61(3H, d, 7.0)	
34	-0.21(3H, d, 7.0)	-0.12(3H, d,7.0)	-0.05(3H, d,7.0)	
36	2.02(3H, s)	2.01(3H, s)	2.02(3H, s)*4	
37	3.00(3H, s)	3.00(3H, s)	3.00(3H, s)	
N-CH3	2.78(3H, s)		2.60(3H, s)	
PhC <i>H</i> ⊨N-N	8.32(1H, s)		8.24(1H, s)	
PhC <i>H</i> =O		10.53(1H, s)		
CH2N	3.30(4H, br m)*3		3.26(4H, brm)	
	3.18(4H, br m)		2.95(4H, brm)	
1'		5.24(1H, d, 4.5)	5.22(1H, d, 4.5)	
2'		3.93(1H, dd, 5.5, 4.5)	3.93(1H, dd, 5.5, 4.5)	
3'		3.87(1H, dd, 5.5, 1.5)	3.88(1H, dd, 5.5, 2.0)	
4'		4.01(1H, ddd, ca.4.0, 4.0, 1.5)	4.00(1H, m)	
5'		3.52(2H, d, 4.0)	3.51(2H, d, 4.0)	

Table 2. ¹H NMR chemical shifts (δ , ppm), multiplicity and coupling constants (J, Hz) of rifampicin (1), RIP-Ma (6) and RIP-Mb (7) in CD₃OD.

*1 N. MORISAKI et al., J. Antibiotics, 46: 1605~1610, 1993.

*² Overlapping with other signals.

*³ Obscured by other resonances.

*4 Interchangeable.

73.2 ppm (C-2'), 71.7 ppm (C-3'), 86.7 ppm (C-4') and 63.5 ppm (C-5'), that were absent in the spectra of rifampicin (1). Down field shifts of H-23 ($\Delta \delta_{\rm H}$ 0.13 ppm) and C-23 signal ($\Delta \delta_{\rm C}$ 9.7 ppm) of 7 relative to those of rifampicin indicated the ribosylation of the OH group on C-23.

The absolute configuration of the ribose was determined on a chiral HPLC column (Scheme 1). The ribose obtained by hydrolysis of RIP-Mb (7) was converted to the aldononitrile acetate 8,¹⁵⁾ and 8 was analyzed on Chiralcel OD-H column.¹⁶⁾ Retention time of the derivatives 8 from the ribose of RIP-Mb, L-ribose and D-ribose were 60.0 minutes, 58.0 minutes and 59.6 minutes, respectively. Accordingly, the absolute configuration of ribose in RIP-Mb was assigned to be D.

The configuration at anomeric carbon of D-ribose in

Carbon	Rifampicin*1	RIP-Ma	RIP-Mb	Carbon	Rifampicin	RIP-Ma	RIP-Mb
1-10	184.0	185.2	184.8	25	75.6	75.4	75.3
	175.8	174.8	174.8	26	41.7	42.1	42.3
	149.3	152.5	149.2	27	78.5	78.4	78.5
	147.9	149.1	147.5	28	120.1 ^{*3}	120.0	120.0
	119.7 * 3	120.7	119.5	29	144.7	144.7	144.7
	118.2	120.2	118.4	30	20.8	20.3	20.7
	116.1	119.4	116.5	31	18.2	18.1	18.3
	116.0	115.2	116.0	32	11.0	11.6	11.7
	105.0	105.7	104.6	33	9.4	10.3	10.2
	101.9	101.6	101.5	34	, 9 .7	9.5	9.7
11	189.0	188.9	188.2	35	172.4	172.5	172.5
12	110.6	110.4	110.4	36	20.8	21.0	21.0
13	22.4	22.2	22.3	37	56.7	56.7	56.7
14	7.5	7.4	7.5	NCH3	43.7		44.6
15	171.1	171.8	170.6	Ph <i>C</i> H=N-N	138.8		137.7
16	133.1	133.4	133.3	Ph <i>C</i> H=O		193.1	
17	134.8	134.0	134.8	CH ₂ N	53.2		53.8
18	129.0	129.7	129.0		49.5 [*] 2		50.1
19	140.7	140.0	141.1	1'		105.1	105.1
20	39.1	38.9	39.4	2'		73.2	73.2
21	75.2	76.5	75.6	3'		71.6	71.7
22	34.4	34.8	35.0	4'		86.7	86.7
23	78.2	88.1	87.9	5'		63.4	63.5
24	39.4	39.6	39.6	.=			

Table 3. ¹³C NMR chemical shifts (δ ppm) of rifampicin (1), RIP-Ma (6) and RIP-Mb (7) in CD₃OD.

*1 N. MORISAKI et al., J. Antibiotics, 46: 1605~1610, 1993.

*² Obscured by other resonances.

*³ Interchangeable.

Scheme 1. Derivatization of ribose in RIP-Mb (7) for HPLC analysis.

Arrows indicate ${}^{1}H{}^{-13}C$ correlation by HMBC experiment.

RIP-Ma and RIP-Mb was determined to be α from the reported ¹³C NMR chemical shift data of methyl α - and β -furanosides of pentoses.^{12~14)} Thus, the structures of RIP-Ma (6) and RIP-Mb (7) were determined to be 3-formyl-23-[O-(α -D-ribofuranosyl)]rifamycin SV and 23-[O-(α -D-ribofuranosyl)]rifampicin, respectively. During the incubation period, the ratio of RIP-Ma and RIP-Mb in the culture medium was almost constant, and RIP-Mb did not decompose to RIP-Ma in the isolation

and purification procedure. Therefore, the imide group is considered to be biologically hydrolized.

References

- MAGGI, N.; C. R. PASQUALUCCI, R. BALLOTTA & P. SENSI: Rifampicin: A new orally active rifamycin. Chemotherapia 11: 285~292, 1966
- 2) FURESZ, S.: Chemical and biological properties of rifampicin. Antibiot. Chemother. 16: 316~351, 1970
- LANCINI, G. & W. ZANICHELLI: Structure-activity relationships in rifamycins. In Structure-activity Relationships among the Semisynthetic Antibiotics. Ed., D. PERLMAN, pp. 531~600, Academic Press, 1977
- MORISAKI, N.; S. IWASAKI, K. YAZAWA, Y. MIKAMI & A. MAEDA: Inactivated products of rifampicin by pathogenic *Nocardia* spp.: Structures of glycosylated and phosphorylated metabolites of rifampicin and 3-formylrifamycin SV. J. Antibiotics 46: 1605~1610, 1993
- YAZAWA, K.; Y. MIKAMI, A. MAEDA, M. AKAO, N. MORISAKI & S. IWASAKI: Inactivation of rifampin by *Nocardia brasiliensis*. Antimicrob. Agents Chemother. 37: 1313~1317, 1993
- YAZAWA, K.; Y. MIKAMI, A. MAEDA, N. MORISAKI & S. IWASAKI: Phosphorylative inactivation of rifampicin by *Nocardia otitidiscaviarum*. J. Antimicrob. Chemother. 33: 1127~1135, 1994
- 7) TANAKA, Y.; K. YAZAWA, E. R. DABBS, H. KOMAKI, Y. MIKAMI, M. MIYAZI, N. MORISAKI & S. IWASAKI: Different rifampicin inactivation mechanisms in *Nocardia* and related texa. J. Antibiotics (in preparation)
- 8) Dabbs, E. R.; K. Yazawa, Y. Tanaka, Y. Mikami, M.

MIYAJI, S. J. ANDERSEN, N. MORISAKI, S. IWASAKI, O. SHIDA, H. TAKAGI & K. KADOWAKI: Rifampicin inactivation by *Bacillus* species. J. Antibiotics 48: $815 \sim 819$, 1995

- DABBS, E. R.: Rifampicin inactivation by *Rhodococcus* and *Mycobacterium* species. FEMS Microbiol. Lett. 44: 395~399, 1987
- ANDERSEN, S. J. & E. R. DABBS: Cloning of nocardioform DNA conferring the ability to inactivate rifampicin. FEMS Microbiol. Lett. 79: 247~250, 1991
- DABBS, E. R.; K. YAZAWA, Y. MIKAMI, M. MIYAJI, N. MORISAKI, S. IWASAKI & K. FURIHATA: Ribosylation by mycobacterial strains as a new mechanism of rifampin inactivation. Antimicrob. Agents Chemother. 39: 1007~ 1009, 1995
- 12) GORIN, P. A. J. & M. MAZUREK: Further studies on the assignment of signals in ¹³C magnetic resonance spectra of aldoses and derived methyl glycosides. Can. J. Chem. 53: 1212~1223, 1975
- 13) RITCHIE, R. G. S.; N. CYR, B. KORSCH, H. J. KOCH & A. S. PERLIN: Carbon-13 chemical shifts of furanosides and cyclopentanols. Configurational and conformational influences. Can. J. Chem. 53: 1424~1433, 1975
- 14) SERIANNI, A. S. & R. BARKER: Isotopically-enriched carbohydrates: The preparation of $[^{2}H]$ -enriched aldoses by catalytic hydrogenolysis of cyanohydrins with $^{2}H_{2}$. Canad. J. Chem. 57: 3160~3167, 1979
- WOHL, A.: Abbau des Traubenzuckers. Ber. 26: 730~ 744, 1893
- 16) KOBAYASHI, H.; N. MORISAKI, Y. TAGO, Y. HASHIMOTO, S. IWASAKI, E. KAWACHI, R. NAGATA & K. SHUDO: Major cytokinin in coconut milk. Experientia (in press)